Lipopolysaccharide Induces Matrix Metalloproteinase-9 Expression via a Mitochondrial Reactive Oxygen Species-p38 Kinase-Activator Protein-1 Pathway in Raw 264.7 Cells

  • Woo C
  • Lim J
  • Kim J
150Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

We have identified a novel signaling pathway that leads to expression of matrix metalloproteinase-9 (MMP-9) in murine macrophages in response to the bacterial endotoxin, LPS. We showed that p38 kinase was essential for this induction and observed that LPS-induced MMP-9 expression was sensitive to rottlerin, a putative protein kinase Cδ (PKCδ) inhibitor. However neither infection with a retrovirus expressing a dominant negative mutant of PKCδ nor down-regulation of PKCδ by prolonged PMA treatment affected MMP-9 expression, thus excluding involvement of PKCδ. Interestingly, LPS-induced MMP-9 expression and p38 kinase phosphorylation were shown to be suppressed by the antioxidant N-acetylcysteine and the flavoenzyme inhibitor diphenyleneiodonium chloride, but not by pyrrolidine dithiocarbamate, an NF-κB inhibitor. In addition, LPS was found to induce the production of mitochondrial reactive oxygen species (ROS) and this effect was rottlerin-sensitive, suggesting an inhibitory effect of rottlerin on mitochondrial ROS. LPS-induced MMP-9 expression and p38 kinase phosphorylation were also inhibited by rotenone, a specific inhibitor of mitochondrial complex I, supporting the role of mitochondrial ROS in LPS signaling to MMP-9. Finally, we showed that the ROS-p38 kinase cascade targets the transcription factor AP-1. Taken together, our findings identify a ROS-p38 kinase-AP-1 cascade as a novel pathway mediating LPS signaling to MMP-9 expression in macrophages.

Cite

CITATION STYLE

APA

Woo, C.-H., Lim, J.-H., & Kim, J.-H. (2004). Lipopolysaccharide Induces Matrix Metalloproteinase-9 Expression via a Mitochondrial Reactive Oxygen Species-p38 Kinase-Activator Protein-1 Pathway in Raw 264.7 Cells. The Journal of Immunology, 173(11), 6973–6980. https://doi.org/10.4049/jimmunol.173.11.6973

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free