Statistical conclusion validity: Some common threats and simple remedies

57Citations
Citations of this article
222Readers
Mendeley users who have this article in their library.

Abstract

The ultimate goal of research is to produce dependable knowledge or to provide the evidence that may guide practical decisions. Statistical conclusion validity (SCV) holds when the conclusions of a research study are founded on an adequate analysis of the data, generally meaning that adequate statistical methods are used whose small-sample behavior is accurate, besides being logically capable of providing an answer to the research question. Compared to the three other traditional aspects of research validity (external validity, internal validity, and construct validity), interest in SCV has recently grown on evidence that inadequate data analyses are sometimes carried out which yield conclusions that a proper analysis of the data would not have supported. This paper discusses evidence of three common threats to SCV that arise from widespread recommendations or practices in data analysis, namely, the use of repeated testing and optional stopping without control of Type-I error rates, the recommendation to check the assumptions of statistical tests, and the use of regression whenever a bivariate relation or the equivalence between two variables is studied. For each of these threats, examples are presented and alternative practices that safeguard SCV are discussed. Educational and editorial changes that may improve the SCV of published research are also discussed. © 2012 García-Pérez.

Cite

CITATION STYLE

APA

García-Pérez, M. A. (2012). Statistical conclusion validity: Some common threats and simple remedies. Frontiers in Psychology, 3(AUG). https://doi.org/10.3389/fpsyg.2012.00325

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free