Deep convolutional neural network with knn regression for automatic image annotation

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Automatic image annotation is an active field of research in which a set of annotations are automatically assigned to images based on their content. In literature, some works opted for hand-crafted features and manual approaches of linking concepts to images, whereas some others in-volved convolutional neural networks (CNNs) as black boxes to solve the problem without external interference. In this work, we introduce a hybrid approach that combines the advantages of both CNN and the conventional concept-to-image assignment approaches. J-image segmentation (JSEG) is firstly used to segment the image into a set of homogeneous regions, then a CNN is employed to produce a rich feature descriptor per area, and then, vector of locally aggregated descriptors (VLAD) is applied to the extracted features to generate compact and unified descriptors. Thereafter, the not too deep clustering (N2D clustering) algorithm is performed to define local manifolds constituting the feature space, and finally, the semantic relatedness is calculated for both image–concept and concept–concept using KNN regression to better grasp the meaning of concepts and how they re-late. Through a comprehensive experimental evaluation, our method has indicated a superiority over a wide range of recent related works by yielding F1 scores of 58.89% and 80.24% with the datasets Corel 5k and MSRC v2, respectively. Additionally, it demonstrated a relatively high capacity of learning more concepts with higher accuracy, which results in N+ of 212 and 22 with the datasets Corel-5k and MSRC v2, respectively.

Cite

CITATION STYLE

APA

Bensaci, R., Khaldi, B., Aiadi, O., & Benchabana, A. (2021). Deep convolutional neural network with knn regression for automatic image annotation. Applied Sciences (Switzerland), 11(21). https://doi.org/10.3390/app112110176

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free