Lactic Acid Fermentation of Carrageenan Hydrolysates from the Macroalga Kappaphycus alvarezii: Evaluating Different Bioreactor Operation Modes

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Lactic acid is a molecule used abundantly in the food, cosmetic, and pharmaceutical industries. It is also the building block for polylactic acid, a biodegradable polymer which has gained interest over the last decade. Seaweeds are fast growing, environmentally friendly, and economically beneficial. The Rhodophyta, Kappaphycus alvarezii, is a carrageenan-rich alga, which can be successfully fermented into lactic acid using lactic acid bacteria. Lactobacillus pentosus is a versatile and robust bacterium and an efficient producer of lactic acid from many different raw materials. Bioreactor strategies for lactic acid fermentation of K. alvarezii hydrolysate were tested in 2-L stirred-tank bioreactor fermentations, operating at 37 °C, pH 6, and 150 rpm. Productivity and yields were 1.37 g/(L.h) and 1.17 g/g for the pulse fed-batch, and 1.10 g/(L.h) and 1.04 g/g for extended fed-batch systems. A 3.57 g/(L.h) production rate and a 1.37 g/g yield for batch fermentation operating with an inoculum size of 0.6 g/L was recorded. When applying fed-batch strategies, fermentation products reached 91 g/L with pulse feed and 133 g/L with constant continuous feed. For control and comparison, a simple batch of synthetic galactose-rich Man-Sharpe-Rugosa (MRS) media was fermented at the same conditions. A short study of charcoal regenerability is shown. A scheme for a third-generation lactic acid biorefinery is proposed, envisioning a future sustainable large-scale production of this important organic acid.

Cite

CITATION STYLE

APA

Tabacof, A., Calado, V., & Pereira, N. (2023). Lactic Acid Fermentation of Carrageenan Hydrolysates from the Macroalga Kappaphycus alvarezii: Evaluating Different Bioreactor Operation Modes. Polysaccharides, 4(3), 256–270. https://doi.org/10.3390/polysaccharides4030017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free