Computing the Durability of WAAM 18Ni-250 Maraging Steel Specimens with Surface Breaking Porosity

15Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The durability assessment of additively manufactured parts needs to account for both surface-breaking material discontinuities and surface-breaking porosity and how these material discontinuities interact with parts that have been left in the as-built state. Furthermore, to be consistent with the airworthiness standards associated with the certification of metallic parts on military aircraft the durability analysis must be able to predict crack growth, as distinct from using a crack growth analysis in which parameters are adjusted so as to match measured data. To partially address this, the authors recently showed how the durability of wire arc additively manufactured (WAAM) 18Ni-250 maraging steel specimens, where failure was due to the interaction of small surface-breaking cracks with surface roughness, could be predicted using the Hartman–Schijve variant of the NASGRO crack growth equation. This paper illustrates how the same equation, with the same material parameters, can be used to predict the durability of a specimen where failure is due to surface-breaking porosity.

Cite

CITATION STYLE

APA

Peng, D., Champagne, V. K., Ang, A. S. M., Birt, A., Michelson, A., Pinches, S., & Jones, R. (2023). Computing the Durability of WAAM 18Ni-250 Maraging Steel Specimens with Surface Breaking Porosity. Crystals, 13(3). https://doi.org/10.3390/cryst13030443

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free