Scale-dependent measure of network centrality from diffusion dynamics

15Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Classic measures of graph centrality capture distinct aspects of node importance, from the local (e.g., degree) to the global (e.g., closeness). Here we exploit the connection between diffusion and geometry to introduce a multiscale centrality measure. A node is defined to be central if it breaks the metricity of the diffusion as a consequence of the effective boundaries and inhomogeneities in the graph. Our measure is naturally multiscale, as it is computed relative to graph neighborhoods within the varying time horizon of the diffusion. We find that the centrality of nodes can differ widely at different scales. In particular, our measure correlates with degree (i.e., hubs) at small scales and with closeness (i.e., bridges) at large scales, and also reveals the existence of multicentric structures in complex networks. By examining centrality across scales, our measure thus provides an evaluation of node importance relative to local and global processes on the network.

Cite

CITATION STYLE

APA

Arnaudon, A., Peach, R. L., & Barahona, M. (2020). Scale-dependent measure of network centrality from diffusion dynamics. Physical Review Research, 2(3). https://doi.org/10.1103/PhysRevResearch.2.033104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free