Resilience to climate variation in a spatially structured amphibian population

15Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding the impact of weather fluctuations on demographic parameters is of crucial interest to biodiversity research in a context of global climate change. Amphibians are valuable candidates for investigating this topic due to their strong physiological dependence on water availability and temperature. In this study, we took advantage of data from a long-term capture–mark–recapture (CMR) monitoring program of a great crested newt (Triturus cristatus) population inhabiting a 12-pond archipelago in southeastern France. We investigated the interactions between vital rates (survival and recruitment), the internal structure of the population, and climatic variables both at a local and a regional (North Atlantic Oscillation: NAO) scale. Overall, we found a weak relationship between climatic variables and the survival of large-bodied newts. The only strong relationship was found to be a high NAO index during the post-breeding period, suggesting that dry, hot summers negatively impact survival. In terms of recruitment, the results indicated that hot weather during the activity period had delayed deleterious effects on adult recruitment two years later, suggesting high larval and juvenile mortality due to unsuitable growing conditions. Recruitment was also impacted by a high NAO index during the overwintering period preceding recruitment, suggesting that mild weather increases the mortality of juveniles, probably by enhancing the depletion of energy reserves without any possibility of refueling.

Cite

CITATION STYLE

APA

Weinbach, A., Cayuela, H., Grolet, O., Besnard, A., & Joly, P. (2018). Resilience to climate variation in a spatially structured amphibian population. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33111-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free