Abstract
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3β-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3β-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3β. rAxin also interacted directly with the armadillo repeats of β-catenin. The binding site of rAxin for GSK-3β was distinct from the β-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3β-dependent phosphorylation of β-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3β and β-catenin and mediating the signal from GSK-3β to β-catenin.
Author supplied keywords
Cite
CITATION STYLE
Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO Journal, 17(5), 1371–1384. https://doi.org/10.1093/emboj/17.5.1371
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.