Inhibition of Calcium Signaling Prevents Exhaustion and Enhances Anti-Leukemia Efficacy of CAR-T Cells via SOCE-Calcineurin-NFAT and Glycolysis Pathways

38Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chimeric antigen receptor (CAR) T cells are potent agents for recognizing and eliminating tumors, and have achieved remarkable success in the treatment of patients with refractory leukemia and lymphoma. However, dysfunction of T cells, including exhaustion, is an inevitable obstacle for persistent curative effects. Here, the authors initially found that calcium signaling is hyperactivated via sustained tonic signaling in CAR-T cells. Next, it is revealed that the store-operated calcium entry (SOCE) inhibitor BTP-2, but not the calcium chelator BAPTA-AM, markedly diminishes CAR-T cell exhaustion and terminal differentiation of CAR-T cells in both tonic signaling and tumor antigen exposure models. Furthermore, BTP-2 pretreated CAR-T cells show improved antitumor potency and prolonged survival in vivo. Mechanistically, transcriptome and metabolite analyses reveal that treatment with BTP-2 significantly downregulate SOCE-calcineurin-nuclear factor of activated T-cells (NFAT) and glycolysis pathways. Together, the results indicate that modulating the SOCE-calcineurin-NFAT pathway in CAR-T cells renders them resistant to exhaustion, thereby yielding CAR products with enhanced antitumor potency.

Cite

CITATION STYLE

APA

Shao, M., Teng, X., Guo, X., Zhang, H., Huang, Y., Cui, J., … Huang, H. (2022). Inhibition of Calcium Signaling Prevents Exhaustion and Enhances Anti-Leukemia Efficacy of CAR-T Cells via SOCE-Calcineurin-NFAT and Glycolysis Pathways. Advanced Science, 9(9). https://doi.org/10.1002/advs.202103508

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free