Pseudotime estimation: Deconfounding single cell time series

86Citations
Citations of this article
234Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. Results: We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method's utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Availability and Implementation: Our method is available on CRAN in the DeLorean package.

Cite

CITATION STYLE

APA

Reid, J. E., & Wernisch, L. (2016). Pseudotime estimation: Deconfounding single cell time series. Bioinformatics, 32(19), 2973–2980. https://doi.org/10.1093/bioinformatics/btw372

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free