Photochemistry of the atmosphere of Uranus

  • Summers M
  • Strobel D
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

A detailed one-dimensional photochemical model incorporating vertical transport by eddy and molecular diffusion is used to study the importance of chemical and physical processes that control the hydrocarbon abundances in the stratosphere of Uranus. The study includes updated photochemical reaction rates and photolysis branching ratios; explicit calculation of the condensation rate of condensing species; and appropriate boundary conditions at the tropopause. It is found that the basic photochemical process generally produces low net conversion efficiencies of methane to higher hydrocarbons. However, even with these low efficiencies, the total condensation rate, which represents the net rate of conversion of methane to hydrocarbons, is roughly 2 x 10 to the -16th g/cm sec, in agreement with the upper range of the low condensation rate for the production of the stratospheric aerosol layer as determined by Pollack et al. (1987). Furthermore, a range of vertical transport rates is required to separately match the observational constraints on hydrocarbon abundances. The solar reflection data refer to the sunlit polar region of Uranus and require an eddy diffusion coefficient of K approx. = 50 sq cm/sec for globally averaged insolation or K approx = 1500 (Nh/N) exp 1/2 for overhead sun. The Voyager 2 Utraviolet Spectrometer solar occultation data refer to the equatorial regions, thus implying a large latitudinal gradient in stratospheric hydrocarbon abundance.

Cite

CITATION STYLE

APA

Summers, M. E., & Strobel, D. F. (1989). Photochemistry of the atmosphere of Uranus. The Astrophysical Journal, 346, 495. https://doi.org/10.1086/168031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free