Influence of Magnetic Field, Viscous Dissipation and Thermophoresis on Darcy-Forcheimer Mixed Convection Flow in Fluid Saturated Porous Media

  • Fagbade A
  • Falodun B
  • Boneze C
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

This paper presents an application of the spectral homotopy analysis method (SHAM) to solve a problem of darcy-forcheimer mixed convection flow in a porous medium in the presence of magnetic field, viscous dissipation and thermopherisis. A mathematical model governed the flow is analyzed in order to study the effects of chemical reaction, magnetic field, viscous dissipation and thermophoresis on mixed convection boundary layer flow of an incompressible, electrically conducting fluid past a heated vertical permeable flat plate embedded in a uniform porous medium. The similarity variable is used to transform the governing equations into a boundary valued problem of coupled ordinary differential equations which are then solved using spectral homotopy Analysis Method. The spatial domains are discretized using Chebyshev-Gauss-Lobatto points and numerical computations are carried out for the non-dimensional physical parameters. A parametric study of selected parameters is conducted and the results for the velocity, temperature and concentration are illustrated graphically and physical aspects of the problem are discussed.

Cite

CITATION STYLE

APA

Fagbade, A. I., Falodun, B. O., & Boneze, C. U. (2015). Influence of Magnetic Field, Viscous Dissipation and Thermophoresis on Darcy-Forcheimer Mixed Convection Flow in Fluid Saturated Porous Media. American Journal of Computational Mathematics, 05(01), 18–40. https://doi.org/10.4236/ajcm.2015.51002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free