Entanglement entropy and subregion complexity in thermal perturbations around pure AdS spacetime

22Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We compute the holographic entanglement entropy and subregion complexity of spherical boundary subregions in the uncharged and charged anti-de Sitter (AdS) black hole backgrounds, with the change in these quantities being defined with respect to the pure AdS result. This calculation is done perturbatively in the parameter Rzh, where zh is the black hole horizon and R is the radius of the entangling region. We provide analytic formulas for these quantities as functions of the boundary spacetime dimension d including several orders higher than previously computed. We observe that the change in entanglement entropy has a definite sign at each order and subregion complexity has a negative sign relative to entanglement entropy at each of those orders (except at first order or in three spacetime dimensions, at which it vanishes identically). We combine preexisting work on the "complexity equals volume" conjecture and the conjectured relationship between Fisher information and bulk entanglement to suggest a refinement of the so-called first law of entanglement thermodynamics by introducing a work term associated with complexity. This extends the previously proposed first law, which held to first order, to one that holds to second order. We note that the proposed relation does not hold to third order and speculate on the existence of additional information-theoretic quantities that may also play a role.

Cite

CITATION STYLE

APA

Bhattacharya, A., Grosvenor, K. T., & Roy, S. (2019). Entanglement entropy and subregion complexity in thermal perturbations around pure AdS spacetime. Physical Review D, 100(12). https://doi.org/10.1103/PhysRevD.100.126004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free