Abstract
Random Forests are one of the most popular classifiers in machine learning. The larger they are, the more precise the outcome of their predictions. However, this comes at a cost: it is increasingly difficult to understand why a Random Forest made a specific choice, and its running time for classification grows linearly with the size (number of trees). In this paper, we propose a method to aggregate large Random Forests into a single, semantically equivalent decision diagram which has the following two effects: (1) minimal, sufficient explanations for Random Forest-based classifications can be obtained by means of a simple three step reduction, and (2) the running time is radically improved. In fact, our experiments on various popular datasets show speed-ups of several orders of magnitude, while, at the same time, also significantly reducing the size of the required data structure.
Author supplied keywords
Cite
CITATION STYLE
Gossen, F., & Steffen, B. (2023). Algebraic aggregation of random forests: towards explainability and rapid evaluation. International Journal on Software Tools for Technology Transfer, 25(3), 267–285. https://doi.org/10.1007/s10009-021-00635-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.