Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance (RL), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage (VOUT) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous VOUT amplification process.
CITATION STYLE
Zhou, X., Yang, L., Bian, Y., Ma, X., Han, N., & Chen, Y. (2018). Coupling p+n field-effect transistor circuits for low concentration methane gas detection. Sensors (Switzerland), 18(3). https://doi.org/10.3390/s18030787
Mendeley helps you to discover research relevant for your work.