Temporal order of signal propagation within and across intrinsic brain networks

30Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We studied the temporal dynamics of activity within and across functional MRI (fMRI)–derived nodes of intrinsic resting-state networks of the human brain using intracranial electroencephalography (iEEG) and repeated single-pulse electrical stimulation (SPES) in neurosurgical subjects implanted with intracranial electrodes. We stimulated and recorded from 2,133 and 2,372 sites, respectively, in 29 subjects. We found that N1 and N2 segments of the evoked responses are associated with intra- and internetwork communications, respectively. In a separate cognitive experiment, evoked electrophysiological responses to visual target stimuli occurred with less temporal separation across pairs of electrodes that were located within the same fMRI-defined resting-state networks compared with those located across different resting-state networks. Our results suggest intranetwork prior to internetwork information processing at the subsecond timescale.

Cite

CITATION STYLE

APA

Veit, M. J., Kucyi, A., Hu, W., Zhang, C., Zhao, B., Guo, Z., … Parvizi, J. (2021). Temporal order of signal propagation within and across intrinsic brain networks. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/pnas.2105031118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free