Wet electrospinning of polyacrylonitrile (PAN) and dimethylformamide (DMF) with copper nanoparticles (CuNP) at different concentrations from 0.2 to 1 wt% have been studied under certain spinning conditions. A specific coagulating water bath has been used to collect different fibroses and fibril diameters, the effect of spinning height on the produced nanofiber and CuNP/PAN nanofibril composites have been studied from 1 to 7 cm heights. A minimum average diameter of 64 nm has been reported at 7-cm spinning height. Two heat treatment steps have been used to enhance the electrical properties of CuNP/PAN nanofibril composites. SEM has been used to study the morphological characteristics of the electrospun nanofibroses membranes. Preliminary electrical measurements using 4-point probing system showed a noticeable improvement in the electrical conductivity of the produced nanofibril composite membranes. Also, electrical property of a single CuNP/carbon nanofibril composite has been theoretically calculated based on Lichtenecker formula. The produced membranes have been used to build a micro surface-mounted components (MSMC) such as Micro Field Effect Transistor (MFET). A high transconductance has been reported for such a device which will open the door for many promising applications especially in Electronics and Biomedicine.
CITATION STYLE
Ali, A. A., & Al-Asmari, A. K. (2012). Wet-electrospun CuNP/carbon nanofibril composites: potential application for micro surface-mounted components. Applied Nanoscience (Switzerland), 2(1), 55–61. https://doi.org/10.1007/s13204-011-0042-z
Mendeley helps you to discover research relevant for your work.