Up-regulation of cyclic electron flow and down-regulation of linear electron flow in antisense-rca mutant rice

11Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (P N) half of that of wild type parent, we measured the response curve of P N to intercellular CO2 concentration (C i), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv′/Fm′), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on C i, ETR at saturation irradiance, and Fv′/Fm′, ΦPS2, and q P under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700 + re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy. © 2008 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Jin, S. H., Wang, D., Zhu, F. Y., Li, X. Q., Sun, J. W., & Jiang, D. A. (2008). Up-regulation of cyclic electron flow and down-regulation of linear electron flow in antisense-rca mutant rice. Photosynthetica, 46(4), 506–510. https://doi.org/10.1007/s11099-008-0086-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free