Abstract
The impact dynamics of water nanodroplets on flat solid surfaces was studied by molecular dynamics simulations over a wide range of Weber numbers (We) and surface wettability (θ0), where θ0 is the Young contact angle. A phase diagram in the parameter space of We vs θ0 was established accommodating eight impact outcomes noted in the final stage of impact, with three of them, holes rebound, partial-rebound splash, and rebound splash, for the first time being identified and reported. The eight impact outcomes were classified into three categories, i.e., non-bouncing, bouncing, and splash. The results show that the splash is triggered only when Wecr > 140. The boundaries separating bouncing from non-bouncing were determined based on the phase diagram. When θ0 > 160°, the boundary is described as Wecr = a 1; when 110° < θ0 < 160°, the boundary depends on both We and θ0, with a larger We required to trigger bouncing on a less hydrophobic surface, expressed as Wecr = b + ccosθ0; when θ0 < 110°, bouncing never takes place, and hence, the boundary is determined only by the critical contact angle, expressed as θ0,cr = 110°. Here, a, b, and c are constants.
Cite
CITATION STYLE
Ma, Q., Wang, Y. F., Wang, Y. B., He, X., Zheng, S. F., Yang, Y. R., … Lee, D. J. (2021). Phase diagram for nanodroplet impact on solid surfaces. Physics of Fluids, 33(10). https://doi.org/10.1063/5.0067780
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.