Abstract
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. © 2013 Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Author supplied keywords
Cite
CITATION STYLE
Tenne, Y. (2013). An optimization algorithm employing multiple metamodels and optimizers. International Journal of Automation and Computing, 10(3), 227–241. https://doi.org/10.1007/s11633-013-0716-y
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.