Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks

15Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The overwhelming data rates in next generation wireless networks impose a burden on the high-capacity network planning. One promising strategy to meet the demand for high-capacity communications is to augment radio frequency (RF) based multi-channel multi-radio (MCMR) wireless mesh network (WMN) by free-space optics (FSO). In this paper, we construct a hybrid RF/FSO MCMR WMN topology and address its resource allocation (RA) problem in terms of interface assignment, channel allocation, routing, FSO link allocation, and topology control. Considering the weather effects on FSO link availability and the fading nature of RF links, the RA problem is formulated as a two-stage optimization problem with the objective of maximizing the network throughput. In our optimization model, we formulate each stage as a mixed integer linear program, and the bottleneck RF links are gradually upgraded by FSO links. To avoid the computational complexity of the second stage optimization, an improved iterated local search algorithm is proposed. Simulation results show that our RA scheme is efficient and the throughput can be enhanced dramatically by proper FSO link augmentation.

Cite

CITATION STYLE

APA

Zhao, Y., Shi, W., Shi, H., Liu, W., Wang, Z., & Zhang, J. (2020). Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks. IEEE Access, 8, 9358–9370. https://doi.org/10.1109/ACCESS.2020.2965081

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free