Abstract
Integrated devices incorporating MEMS (microelectromechanical systems) with IC (inte-grated circuit) components have been becoming increasingly important in the era of IoT (Internet of Things). In this study, a hybrid fuzzy MCDM (multi-criteria decision making) model was proposed to effectively evaluate alternative technologies that incorporate MEMS with IC components. This model, composed of the fuzzy AHP (analytic hierarchy process) and fuzzy VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) methods, solves the decision problem of how best to rank MEMS and IC integration technologies in a fuzzy environment. The six important criteria and the major five alternative technologies associated with our research themes were explored through literature review and expert investigations. The priority weights of criteria were derived using fuzzy AHP. After that, fuzzy VIKOR was deployed to rank alternatives. The empirical results show that development schedule and manufacturing capability are the two most important criteria and 3D (three-dimensional) SiP (system-in-package) and monolithic SoC (system-on-chip) are the top two favored technologies. The proposed fuzzy decision model could serve as a reference for the future strategic evaluation and selection of MEMS and IC integration technologies.
Author supplied keywords
Cite
CITATION STYLE
Lee, Q. Y., Lee, M. X., & Lee, Y. C. (2021). A hybrid fuzzy decision model for evaluating mems and ic integration technologies. Micromachines, 12(3), 1–13. https://doi.org/10.3390/mi12030276
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.