Abstract
To directly and quantitatively identify the transcriptional protein complexes assembled on accessible chromatin, we develop an assay for transposase-accessible chromatin using mass spectrum (ATAC-MS) based on direct transposition of biotinylated adaptors into open chromatin. Coupling with activated gene sequence information by ATAC-seq, ATAC-MS can profile the accessible chromatin-protein machinery. ATAC-MS, combined with fractionation strategies (fATAC-MS), can provide a high-resolution chromatin-transcriptional machinery atlas. ATAC-MS with a novel Tn5-dCas9 fusion protein [dCas9-targeted ATAC-MS (ctATAC-MS)] further facilitates systematic pinpointing of the transcriptional machinery at specific open chromatin regions. We used ATAC-MS and ATAC-seq to investigate transcriptional regulation during C2C12 cell differentiation and demonstrated the role of RFX1 in regulating the proliferation and differentiation of C2C12 cells. Our strategy provides a universal toolbox including ATAC-MS, fATAC-MS, and ctATAC-MS, which enables us to portray the transcriptional regulation machinery atlas in genome scale and investigate the protein-DNA complex at a specific genomic locus.
Cite
CITATION STYLE
Zhang, H., Qin, Z., Yue, X., Liu, Y., Sun, X., Feng, J., … Ding, C. (2021). Proteome-wide profiling of transcriptional machinery on accessible chromatin with biotinylated transposons. Science Advances, 7(43). https://doi.org/10.1126/sciadv.abh1022
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.