Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells

240Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cell migration and wound contraction requires assembly of actin into a functional myosin motor unit capable of generating force. However, cell migration also involves formation of actin-containing membrane ruffles. Evidence is provided that actin-myosin assembly and membrane ruffling are regulated by distinct signaling pathways in the migratory cell. Interaction of cells with extracellular matrix proteins or cytokines promote cell migration through activation of the MAP kinases ERK1 and ERK2 as well as the molecular coupling of the adaptor proteins p130CAS and c-CrkII. ERK signaling is independent of CAS/Crk coupling and regulates myosin light chain phosphorylation leading to actin-myosin assembly during cell migration and cell-mediated contraction of a collagen matrix. In contrast, membrane ruffling, but not cell contraction, requires Rac GTPase activity and the formation of a CAS/Crk complex that functions in the context of the Rac activating protein DOCK180. Thus, during cell migration ERK and CAS/Crk coupling operate as components of distinct signaling pathways that control actin assembly into myosin motors and membrane ruffles, respectively.

Cite

CITATION STYLE

APA

Cheresh, D. A., Leng, J., & Klemke, R. L. (1999). Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. Journal of Cell Biology, 146(5), 1107–1116. https://doi.org/10.1083/jcb.146.5.1107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free