Suppression of miR‑221 inhibits glioma cells proliferation and invasion via targeting SEMA3B

26Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. Results: In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes. Conclusion: Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma.

Author supplied keywords

Cite

CITATION STYLE

APA

Cai, G., Qiao, S., & Chen, K. (2015). Suppression of miR‑221 inhibits glioma cells proliferation and invasion via targeting SEMA3B. Biological Research, 48. https://doi.org/10.1186/s40659-015-0030-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free