Multi-physics based Simulations of a Shock Absorber Sub-system for PHM

  • L S K
  • K M M S
  • U V
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The multi-physics involve Mechanical, Thermal, Hydraulic, and Pneumatic based modeling and simulation of an oleo-pneumatic shock absorber with fault capabilities presented in this paper. The fault simulated in this model is leakage due to eccentricity. The one-dimensional shock absorber system models render loads at different sink velocities. These load values, used in the structural model to do static stress analysis. By using these loads directly from the system model eliminates the error in load computation from the loads group, thereby eliminating the time and cost involved in this activity. The models and static stress analyses are done with both 1-D and 3-D elements. The 3-D landing gear model meshed with using both auto and manual mesh generation options. The consequences of both 1-D, and 3-D models mesh generation are discussed in this paper. The static stress analysis, compared with the experimental results and it is found that the results are within 5% deviation. Based on the static stress analysis computed the life of a landing gear.

Cite

CITATION STYLE

APA

L S, K., K M M, S., & U, V. (2016). Multi-physics based Simulations of a Shock Absorber Sub-system for PHM. PHM Society European Conference, 3(1). https://doi.org/10.36001/phme.2016.v3i1.1664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free