Machine Learning based Twitter Sentimental Analysis in Business Field

N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

iSocial inetworking isites ilike itwitter ihave imillions iof ipeople ishare itheir ithoughts iday iby iday ias itweets. iThis ipaper iaddresses ithe iproblem iof isentiment ianalysis iin itwitter; ithat iis iclassifying itweets iaccording ito ithe isentiment iexpressed iin ithem: ipositive, inegative ior ineutral. iTwitter iis ian ionline imicro-blogging iand isocial-networking iplatform iwhich iallows iusers ito iwrite ishort istatus iupdates iof imaximum ilength i140 icharacters. iIt iis ia irapidly iexpanding iservice iwith iover i200 imillion iregistered iusers, iout iof iwhich i100 imillion iare iactive iusers iand ihalf iof ithem ilog ion itwitter ion ia idaily ibasis i- igenerating inearly i250 imillion itweets iper iday. iDue ito ithis ilarge iamount iof iusage iwe ihope ito iachieve ia ireflection iof ipublic isentiment iby ianalyzing ithe isentiments iexpressed iin ithe itweets. iAnalyzing ithe ipublic isentiment iis iimportant ifor imany iapplications isuch ias ifirms itrying ito ifind iout ithe iresponse iof itheir iproducts iin ithe imarket, ipredicting ipolitical ielections iand ipredicting isocioeconomic iphenomena ilike istock iexchange. iThe iproject iis ito idevelop ia ifunctional iclassifier ifor iaccurate iand iautomatic isentiment iclassification iof ian iunknown itweet istream.

Cite

CITATION STYLE

APA

Machine Learning based Twitter Sentimental Analysis in Business Field. (2019). International Journal of Innovative Technology and Exploring Engineering, 9(2S), 390–394. https://doi.org/10.35940/ijitee.b1033.1292s19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free