ANALISIS SENTIMEN PADA ULASAN APLIKASI KREDIVO DENGAN ALGORITMA SVM DAN NBC

  • Muhammadin A
  • Sobari I
N/ACitations
Citations of this article
207Readers
Mendeley users who have this article in their library.

Abstract

Analisis sentimen Review Aplikasi Kredivo merupakan salah satu contoh proses untuk mengaplikasikan dari pada metode algoritma Support Vector Machine (SVM) dan Naive Bayes Classifier dalam mengklasifikasi sentiment yang tujuannya adalah membandingkan kedua metode tersebut mana yang lebih baik. Data penelitian ini diambil dari website Google Play Store, data yang diambil yaitu data teks ulasan dengan jumlah 10000 ulasan. Data tersebut melewati proses Data Preprocessing dan menggunakan algoritma Support Vector Machine (SVM) dan Naive Bayes Classifier (NBC). Setelah itu dilakukan pengujian menggunakan kombinasi dari pembagian data latih dan data uji, serta menggunakan sistem set validation, dimana 80% untuk data uji dan 20% untuk data testing. Pengujian menggunakan algoritma Support Vector Machine menghasilkan akurasi 83,3% dengan nilai presisi untuk kelas positif 77% dan kelas negatif 87% sedangkan nilai recall untuk kelas positif sebesar 89% dan 73% untuk kelas negatif. Kemudian untuk algoritma Naive Bayes Classifier sendiri menghasilkan nilai akurasi sebesar 80,8% dengan nilai presisi untuk kelas positif sebesar 81% dan untuk kelas negatif sebesar 87%, sedangkan nilai recall untuk kelas positif sebesar 88% dan untuk kelas negatif sebesar 79%. Jadi untuk tingkat keseluruhan dapat dilihat dari nilai akursi dengan algoritma SVM lebih tinggi dibanding Naive Bayes Classifier.

Cite

CITATION STYLE

APA

Muhammadin, A., & Sobari, I. A. (2021). ANALISIS SENTIMEN PADA ULASAN APLIKASI KREDIVO DENGAN ALGORITMA SVM DAN NBC. Reputasi: Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/reputasi.v2i2.785

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free