STOCHSIMGPU: Parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

29Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Klingbeil, G., Erban, R., Giles, M., & Maini, P. K. (2011). STOCHSIMGPU: Parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB. Bioinformatics, 27(8), 1170–1171. https://doi.org/10.1093/bioinformatics/btr068

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free