An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery

81Citations
Citations of this article
226Readers
Mendeley users who have this article in their library.

Abstract

High-resolution drone aerial surveys combined with object-based image analysis are transforming our capacity to monitor and manage aquatic vegetation in an era of invasive species. To better exploit the potential of these technologies, there is a need to develop more efficient and accessible analysis workflows and focus more efforts on the distinct challenge of mapping submerged vegetation. We present a straightforward workflow developed to monitor emergent and submerged invasive water soldier (Stratiotes aloides) in shallow waters of the Trent-Severn Waterway in Ontario, Canada. The main elements of the workflow are: (1) collection of radiometrically calibrated multispectral imagery including a near-infrared band; (2) multistage segmentation of the imagery involving an initial separation of above-water from submerged features; and (3) automated classification of features with a supervised machine-learning classifier. The approach yielded excellent classification accuracy for emergent features (overall accuracy = 92%; kappa = 88%; water soldier producer's accuracy = 92%; user's accuracy = 91%) and good accuracy for submerged features (overall accuracy = 84%; kappa = 75%; water soldier producer's accuracy = 71%; user's accuracy = 84%). The workflow employs off-the-shelf graphical software tools requiring no programming or coding, and could therefore be used by anyone with basic GIS and image analysis skills for a potentially wide variety of aquatic vegetation monitoring operations.

Cite

CITATION STYLE

APA

Chabot, D., Dillon, C., Shemrock, A., Weissflog, N., & Sager, E. P. S. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS International Journal of Geo-Information, 7(8). https://doi.org/10.3390/ijgi7080294

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free