Abstract
High-resolution drone aerial surveys combined with object-based image analysis are transforming our capacity to monitor and manage aquatic vegetation in an era of invasive species. To better exploit the potential of these technologies, there is a need to develop more efficient and accessible analysis workflows and focus more efforts on the distinct challenge of mapping submerged vegetation. We present a straightforward workflow developed to monitor emergent and submerged invasive water soldier (Stratiotes aloides) in shallow waters of the Trent-Severn Waterway in Ontario, Canada. The main elements of the workflow are: (1) collection of radiometrically calibrated multispectral imagery including a near-infrared band; (2) multistage segmentation of the imagery involving an initial separation of above-water from submerged features; and (3) automated classification of features with a supervised machine-learning classifier. The approach yielded excellent classification accuracy for emergent features (overall accuracy = 92%; kappa = 88%; water soldier producer's accuracy = 92%; user's accuracy = 91%) and good accuracy for submerged features (overall accuracy = 84%; kappa = 75%; water soldier producer's accuracy = 71%; user's accuracy = 84%). The workflow employs off-the-shelf graphical software tools requiring no programming or coding, and could therefore be used by anyone with basic GIS and image analysis skills for a potentially wide variety of aquatic vegetation monitoring operations.
Author supplied keywords
Cite
CITATION STYLE
Chabot, D., Dillon, C., Shemrock, A., Weissflog, N., & Sager, E. P. S. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS International Journal of Geo-Information, 7(8). https://doi.org/10.3390/ijgi7080294
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.