We show that flash sintering produces single-phase, nanograin-sized polycrystals of isovalent-substituted multiferroic ceramics of complex compositions. Single-phase polycrystals of Bi0.98R0.02FeO3 (R = La, Sm, Y) were produced at a furnace temperature of ~650°C in a few seconds by the application of an electric field of 50 V cm−1, with the current limit set to 40 mA mm−2. The dielectric and insulating properties compared favorably with expected values. Impedance spectroscopy suggests electrically homogenous microstructure, except for the sample Bi0.98La0.02FeO3 that shows a small grain boundary contribution to the impedance. These results reinforce the enabling nature of flash sintering for ceramics which pose difficulties in conventional sintering because they contain low melting constituents or develop secondary phases during the sintering protocol.
CITATION STYLE
Gil-González, E., Perejón, A., Sánchez-Jiménez, P. E., Raj, R., & Pérez-Maqueda, L. A. (2020). Processing and properties of Bi0.98R0.02FeO3 (R = La, Sm, Y) ceramics flash sintered at ~650°C in <5 s. Journal of the American Ceramic Society, 103(1), 136–144. https://doi.org/10.1111/jace.16718
Mendeley helps you to discover research relevant for your work.