Respiratory pressure responses to cervical magnetic stimulation are important measurements in monitoring the mechanical function of the respiratory muscles. Pressures can be measured using balloon catheters or a catheter containing integrated micro-transducers. However, no research has provided a comprehensive analysis of their pressure measurement characteristics. Accordingly, the aim of this study was to provide a comparative analysis of these characteristics in two separate experiments: (1) in vitro with a reference pressure transducer following a controlled pressurization; and (2) in vivo following cervical magnetic stimulations. In vitro the micro-transducer catheter recorded pressure amplitudes and areas which were in closer agreement to the reference pressure transducer than the balloon catheter. In vivo there was a main effect for stimulation power and catheter for esophageal (Pes), gastric (Pga), and transdiaphragmatic (Pdi) pressure amplitudes (p < 0.001) with the micro-transducer catheter recording larger pressure amplitudes. There was a main effect of stimulation power (p < 0.001) and no main effect of catheter for esophageal (p = 0.481), gastric (p = 0.923), and transdiaphragmatic (p = 0.964) pressure areas. At 100% stimulator power agreement between catheters for Pdi amplitude (bias =6.9 cmH2O and LOA −0.61 to 14.27 cmH2O) and pressure areas (bias = −0.05 cmH2O·s and LOA −1.22 to 1.11 cmH2O·s) were assessed. At 100% stimulator power, and compared to the balloon catheters, the micro-transducer catheter displayed a shorter 10–90% rise time, contraction time, latency, and half-relaxation time, alongside greater maximal rates of change in pressure for esophageal, gastric, and transdiaphragmatic pressure amplitudes (p < 0.05). These results suggest that caution is warranted if comparing pressure amplitude results utilizing different catheter systems, or if micro-transducers are used in clinical settings while applying balloon catheter-derived normative values. However, pressure areas could be used as an alternative point of comparison between catheter systems.
CITATION STYLE
MacAskill, W., Hoffman, B., Johnson, M. A., Sharpe, G. R., & Mills, D. E. (2021). Pressure measurement characteristics of a micro-transducer and balloon catheters. Physiological Reports, 9(8). https://doi.org/10.14814/phy2.14831
Mendeley helps you to discover research relevant for your work.