E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model

43Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

The androgen receptor (AR) is expressed in differentiated secretory prostate epithelial cells in vivo. However, in the human prostate, it is unclear whether androgens directly promote the survival of secretory cells, or whether secretory cells survive through androgen-dependent signals from the prostate stroma. Biochemical and mechanistic studies have been hampered by inadequate cell-culture models. In particular, large-scale differentiation of prostate epithelial cells in culture has been difficult to achieve. Here, we describe the development of a differentiation system that is amenable to functional and biochemical analysis and its application to deciphering the survival pathways in differentiated AR-expressing epithelial cells. Confluent prostate epithelial cell cultures were treated with keratinocyte growth factor (KGF) and dihydrotestosterone. After 2 weeks, a suprabasal cell layer was formed in which cells no longer expressed α2, α3, α6, αv, α1 or α4 integrins or p63, K5, K14, EGFR, FGFR2IIIb or Bcl-2, but instead expressed AR and androgen-induced differentiation markers, including K18, K19, TMPRSS2, Nkx3.1, PMSA, KLK2 and secreted prostate-specific antigen (PSA). Differentiated prostate cell survival depended on E-cadherin and PI3K, but not KGF, androgen, AR or MAPK. Thus survival of differentiated prostate epithelial cells is mediated by cell-cell adhesion, and not through androgen activity or prostate stroma-derived KGF.

Cite

CITATION STYLE

APA

Lamb, L. E., Knudsen, B. S., & Miranti, C. K. (2010). E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. Journal of Cell Science, 123(2), 266–276. https://doi.org/10.1242/jcs.054502

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free