Hydrokinetic energy conversion: A global riverine perspective

7Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Free-flowing rivers have been impacted by anthropogenic activity and extensive hydropower development. Despite this, many opportunities exist for context-specific energy extraction, at locations deemed undesirable for conventional hydropower plants, in ways that reduce the scale of operation and impact. Hydrokinetic energy conversion is a renewable energy technology that requires accurate resource assessment to support deployment in rivers. We use global-scale modeled river discharge data, combined with a high-resolution vectorized representation of river networks, to estimate channel form, flow velocities, and, hence, global hydrokinetic potential. Our approach is based directly on the transfer of kinetic energy through the river network, rather than conventional, yet less realistic, assessments that are based on conversion from gravitational potential energy. We show that this new approach provides a more accurate global distribution of the hydrokinetic resource, highlighting the importance of the lower-courses of major rivers. The resource is shown to have great potential on the continents of South America, Asia, and Africa. We calculate that the mean hydrokinetic energy of global rivers (excluding Greenland and Antarctica) is 5.911 ± 0.009 PJ (1.642 ± 0.003 TWh).

Cite

CITATION STYLE

APA

Ridgill, M., Lewis, M. J., Robins, P. E., Patil, S. D., & Neill, S. P. (2022). Hydrokinetic energy conversion: A global riverine perspective. Journal of Renewable and Sustainable Energy, 14(4). https://doi.org/10.1063/5.0092215

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free