Growing evidence points to the potential of agonistic anti-CD40 mAbs as adjuvants for vaccination against cancer. These appear to act by maturing dendritic cells (DCs) and allowing them to prime CD8 cytotoxic T lymphocytes (CTLs). Although it is well established that optimal T-cell priming requires costimulation via B7:CD28, recent studies emphasize the contribution of TNF receptors to this process. To understand how anti-CD40 mAbs trigger effective antitumor immunity, we investigated the role of TNFR superfamily members CD27 and 4-1BB in the generation of this immunity and showed that, although partially dependent on 4-1BB:4-1BBL engagement, it is completely reliant on CD27:CD70 interactions. Importantly, blocking CD70, and to some extent 4-1BBL, during anti-CD40 treatment prevented accumulation of tumor-reactive T cells and subsequent tumor protection. However, it did not influence changes in DC number, phenotype, nor the activity of CTLs once immunity was established. We conclude that CD27: CD70 and 4-1BB:4-1BBL interactions are needed for DC-driven accumulation of antitumor CTLs following anti-CD40 mAb treatment. Finally, in support of the critical role for CD70:CD27, we show for the first time that agonistic anti-CD27 mAbs given without a DC maturation signal completely protect tumor-bearing mice and provide a highly potent reagent for boosting antitumor T-cell immunity. © 2007 by The American Society of Hematology.
CITATION STYLE
French, R. R., Taraban, V. Y., Crowther, G. R., Rowley, T. F., Gray, J. C., Johnson, P. W., … Glennie, M. J. (2007). Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood, 109(11), 4810–4815. https://doi.org/10.1182/blood-2006-11-057216
Mendeley helps you to discover research relevant for your work.