Influence of a Tailored Oxide Interface on the Quality Factor of Microelectromechanical Resonators

8Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Piezoelectric microelectromechanical systems (MEMS) are used as sensors, actuators, energy harvesters, accelerometers, and communication modules. Aluminum nitride (AlN) is an especially attractive piezoelectric material because its fabrication process allows it to be integrated into semiconductor circuitry to deliver a fully integrated solution. Microelectromechanical resonators with AlN sandwiched between n-type silicon (Si) and top metal electrode with and without a silicon oxide layer are designed and fabricated. The effect of the oxide film is up to a fourfold increase in quality factor (Q) that is consistent from very high frequency (VHF) to super high frequency (SHF). This effect is demonstrated using thin plate bulk acoustic wave modes from 70–80 MHz using the second contour mode and first width extensional mode and from 9.5–10.5 GHz using high overtone thickness modes. To explore potential applications of AlN-transduced Q-enhanced MEMS devices in harsh environments, measurements from −200 °C to +200 °C are performed. The Q enhancement is persistent across a wide temperature range for both VHF and SHF resonators with the added oxide layer. Furthermore, AlN-on-Si resonators that have a comparable temperature coefficient of frequency to silicon carbide-based resonators in commercial applications are demonstrated.

Cite

CITATION STYLE

APA

Lynes, D. D., & Chandrahalim, H. (2023). Influence of a Tailored Oxide Interface on the Quality Factor of Microelectromechanical Resonators. Advanced Materials Interfaces, 10(9). https://doi.org/10.1002/admi.202202446

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free