Abstract
pet56, his3, and ded1 are adjacent but unrelated genes located on chromosome XV of the yeast Saccharomyces cerevisiae. his3 and pet56 are transcribed in opposite directions from initiation sites separated by ~ 200 base pairs. Under normal growth conditions, both genes are transcribed at a similar basal level. Deletion analysis of the his3 gene indicates that the upstream promoter element for constitutive expression is defined by a 17-base-pair region that contains 15 thymidine residues in the coding strand. Sequential deletions of the pet56 gene indicate that this same region is required for wild-type transcription levels. Thus, this poly(dA-dT) sequence acts bidirectionally to activate transcription of two unrelated genes. Transcription of the ded1 gene is initiated ~ 300 base pairs downstream from the his3 gene, and it occurs at a 5-fold higher level. This gene contains a 34-base-pair region containing 28 thymidine residues in the coding strand located upstream from the ded1 TATA box. Deletion of this dA-dT stretch significantly reduces transcription below the wild-type level. Thus, for at least three different yeast genes, naturally occurring stretches of poly(dA-dT) serve as upstream promoter elements for constitutive expression. In addition, it appears that longer stretches of poly(dA-dT) are more effective upstream promoter elements. These transcriptional effects may be due to exclusion of nucleosomes from poly(dA-dT) regions.
Cite
CITATION STYLE
Struhl, K. (1985). Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proceedings of the National Academy of Sciences of the United States of America, 82(24), 8419–8423. https://doi.org/10.1073/pnas.82.24.8419
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.