Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus

22Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neuronswere decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.

Cite

CITATION STYLE

APA

Jiao, H. F., Sun, X. D., Bates, R., Xiong, L., Zhang, L., Liu, F., … Mei, L. (2017). Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 1177–1182. https://doi.org/10.1073/pnas.1618213114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free