Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense

23Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Flowering is crucial to plant reproduction and controlled by multiple factors. However, the mechanisms underlying the regulation of flowering in perennial plants are still largely unknown. Here, we first report a super long blooming 1 (slb1) mutant of the relict tree Liriodendron chinense possessing a prolonged blooming period of more than 5 months, in contrast to the 1 month blooming period in the wild type (WT). Phenotypic characterization showed that earlier maturation of lateral shoots was caused by accelerated axillary bud fate, leading to the phenotype of continuous flowering in slb1 mutants. The transcriptional activity of genes related to hormone signaling (auxin, cytokinin, and strigolactone), nutrient availability, and oxidative stress relief further indicated active outgrowth of lateral buds in slb1 mutants. Interestingly, we discovered a unique FT splicing variant with intron retention specific to slb1 mutants, representing a potential causal mutation in the slb1 mutants. Surprisingly, most slb1 inbred offspring flowered precociously with shorter juvenility (~4 months) than that (usually 8–10 years) required in WT plants, indicating heritable variation underlying continuous flowering in slb1 mutants. This study reports an example of a perennial tree mutant that flowers continuously, providing a rare resource for both breeding and genetic research.

Cite

CITATION STYLE

APA

Sheng, Y., Hao, Z., Peng, Y., Liu, S., Hu, L., Shen, Y., … Chen, J. (2021). Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00610-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free