Implementation Data Mining with Naive Bayes Classifier Method and Laplace Smoothing to Predict Students Learning Results

  • Pradana D
  • Sugiharti E
N/ACitations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Abstract. The application of information technology in the field of education produces big data. It retains information that can be treated as useful. Having data mining, can be used to model highly useful student performance for educators performing corrective actions against weak students.  Purpose: The study was to identify the application and accuracy algorithm Naive Bayes Classifier to predict students' study results. Methods: The prediction system for student learning outcomes was built using the Naive Bayes Classifier and Laplace Smoothing methods using a combination of two Information Gain and Chi Square feature selections. The experiment was carried out 2 times using different dataset comparisons. Result: In the first experiment using a dataset of 80:20, the accuracy Naive Bayes Classifier method with Laplace Smoothing and without Laplace Smoothing showed the same results as 94.937%. On the second experiment to equate dataset 60:40 results of the Naive Bayes Classifier accurate method without Laplace Smoothing only 86.076%, then score a 91.772% accuracy using the Laplace Smoothing. The improvement is caused by a probability of zero that can be worked out with Laplace Smoothing. Novelty: The selection feature process is very important in the classification process. Thus, in this study, information gain and chi square double selections of such features as information gain and so promote accuracy.

Cite

CITATION STYLE

APA

Pradana, D., & Sugiharti, E. (2023). Implementation Data Mining with Naive Bayes Classifier Method and Laplace Smoothing to Predict Students Learning Results. Recursive Journal of Informatics, 1(1), 1–8. https://doi.org/10.15294/rji.v1i1.63964

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free