The techniques of optical beam shaping have enabled progress in a broad range of interdisciplinary science and engineering, owing to the unique properties and promising applications of their created structured light. However, the conventional methods, which are based on fully coherent optics approaches, introduce several adverse effects such as speckles noise in the generated beams and susceptible to be disturbed in complex environment (e.g. turbulent atmospheres), because of the sensitive coherent light-matter interaction. To overcome those side effects, a new protocol relied on the partially coherent beam shaping has been developed. By elaborately tailoring the complex spatial coherence structure of a partially coherent beam, the desired beam profile and trajectory with high beam quality and robust propagation feature in complex environment can be generated. In this review, we present an overview of such unconventional partially coherent beam shaping with a focus on the important role of the complex spatial coherence structure engineering. Partially coherent beam shaping not only provides an efficient means for resisting the disadvantages in coherent optics methods but also enables new applications in novel optical imaging and tweezers.
CITATION STYLE
Chen, Y., Wang, F., & Cai, Y. (2022). Partially coherent light beam shaping via complex spatial coherence structure engineering. Advances in Physics: X. Taylor and Francis Ltd. https://doi.org/10.1080/23746149.2021.2009742
Mendeley helps you to discover research relevant for your work.