Galleria mellonella larvae as an infection model for group A streptococcus

176Citations
Citations of this article
280Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis. © 2013 Landes Bioscience.

Cite

CITATION STYLE

APA

Loh, J. M. S., Adenwalla, N., Wiles, S., & Proft, T. (2013). Galleria mellonella larvae as an infection model for group A streptococcus. Virulence, 4(5), 419–428. https://doi.org/10.4161/viru.24930

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free