The Gut Bacteria Dysbiosis Contributes to Chronic Graft-Versus-Host Disease Associated With a Treg/Th1 Ratio Imbalance

12Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Introduction: Dysbiosis of gut bacteria has been discovered in a large number of autoimmune diseases. However, the influence of the gut bacteria in the mice model of chronic sclerodermatous graft-versus-host disease (Scl-GVHD), a disease that resembles an autoimmune disease characterized by chronic inflammation of multiple organs, such as skin, remains elusive. Here, we explore the role of gut bacteria in an Scl-cGVHD mice model. Methods: We established a mouse model of Scl-cGVHD, collected fecal flora, analyzed the composition, and diversity of intestinal flora using 16S rDNA amplicon sequencing, and detected the proportion of Treg and Th1 cells in splenocytes of Scl-cGVHD mice. To verify the immunoregulatory effect of Scl-cGVHD intestinal flora, we prepared bacterial extracts, co-cultured with splenocytes in vitro, and used flow cytometry to detect T cell differentiation and cytokine secretion. Results: By examining T-cell differentiation in splenocytes of cGVHD mice, we found that Treg cells were significantly reduced (15.27 ± 0.23 vs. 12.23 ± 0.47, p = 0.0045) and Th1 cells were increased (1.54 ± 0.18 vs. 6.68 ± 0.80, p = 0.0034) in cGVHD mice. Significant differences were observed in the composition and diversity of the gut bacteria in mice with Scl-cGVHD versus without GVHD. Analysis of mice fecal bacteria samples (n = 10, 5 Scl-cGVHD and 5 Non-GVHD) showed significant separation [R = 0.732, p = 0.015, non-parametric analysis (ANOSIM)] in Scl-cGVHD and non-GVHD mice. The abundance of the family and genus Ruminococcaceae bacteria decreased and the family Lachnospiraceae and limited to the species Lachnospiraceae_bacterium_DW17 increased in Scl-cGVHD mice. In vitro results of the cellular level study suggest that the bacteria extracts of gut microbiota from Scl-cGVHD mice modulated the splenic T cells toward differentiation into CD4+IFN-γ+ Th1 cells (14.37 ± 0.32 vs. 10.40 ± 2.19, p = 0.036), and the percentage of CD4+CD25+Foxp3+ Tregs decreased (6.36 ± 0.39 vs. 8.66 ± 0.07, p = 0.001) compared with the non-GVHD mice. In addition, the secretion of proinflammatory interferon- γ (IFN-γ) cytokine in the supplement of cellular culture was increased (4,898.58 ± 235.82 vs. 4,347.87 ± 220.02 pg/ml, p = 0.042) in the mice model of the Scl-cGVHD group, but anti-inflammatory interleukin (IL)-10 decreased (7,636.57 ± 608.05 vs. 9,563.56 ± 603.34 pg/ml, p = 0.018). Conclusion: Our data showed the different composition and diversity of gut bacteria in the Scl-cGVHD mice. The dysbiosis of gut bacteria may regulate the differentiation ratio of Treg and Th1 cells, which was associated with Scl-cGVHD.

Cite

CITATION STYLE

APA

Wang, Y., Huang, L., Huang, T., Geng, S., Chen, X., Huang, X., … Weng, J. (2022). The Gut Bacteria Dysbiosis Contributes to Chronic Graft-Versus-Host Disease Associated With a Treg/Th1 Ratio Imbalance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.813576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free