Responses to simulated sunflecks were examined in upper canopy and coppice leaves of Nothofagus cunninghamii growing in an old-growth rainforest gully in Victoria, Australia. Shaded leaves were exposed to a sudden increase in irradiance from 20 to 1500 μmol m-2 s-1. Gas exchange and chlorophyll fluorescence were measured during a 10 min simulated sunfleck and, in the ensuing dark treatment, we examined the recovery of PS II efficiency and the conversion state of xanthophyll cycle pigments. Photosynthetic induction was rapid compared with tropical and northern hemisphere species. Stomatal conductance was relatively high in the shade and stomata did not directly control photosynthetic induction under these conditions. During simulated sunflecks, zeaxanthin was formed rapidly and photochemical efficiency was reduced. These processes were reversed within 30 min in coppice leaves, but this took longer in upper canopy leaves. Poor drought tolerance and achieving a positive carbon balance in a shaded canopy may be functionally related to high stomatal conductance in the shade in N. cunninghamii. The more persistent reduction in photochemical efficiency of upper canopy leaves, which means less efficient light use in subsequent shade periods, but stronger protection from high light, may be related to the generally higher irradiance and longer duration of sunflecks in the upper canopy, but potentially reduces carbon gain during shade periods by 30%. © New Phytologist (2004).
CITATION STYLE
Tausz, M., Warren, C. R., & Adams, M. A. (2005). Dynamic light use and protection from excess light in upper canopy and coppice leaves of Nothofagus cunninghamii in an old growth, cool temperate rainforest in Victoria, Australia. New Phytologist, 165(1), 143–156. https://doi.org/10.1111/j.1469-8137.2004.01232.x
Mendeley helps you to discover research relevant for your work.