Fast and effortless computation of profile likelihoods using CONNECT

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Abstract The frequentist method of profile likelihoods has recently received renewed attention in the field of cosmology. This is because the results of inferences based on the latter may differ from those of Bayesian inferences, either because of prior choices or because of non-Gaussianity in the likelihood function. Consequently, both methods are required for a fully nuanced analysis. However, in the last decades, cosmological parameter estimation has largely been dominated by Bayesian statistics due to the numerical complexity of constructing profile likelihoods, arising mainly from the need for a large number of gradient-free optimisations of the likelihood function. In this paper, we show how to accommodate the computational requirements of profile likelihoods using the publicly available neural network framework connect together with a novel modification of the gradient-based basin-hopping optimisation algorithm. Apart from the reduced evaluation time of the likelihood due to the neural network, we also achieve an additional speed-up of 1-2 orders of magnitude compared to profile likelihoods computed with the gradient-free method of simulated annealing, with excellent agreement between the two. This allows for the production of typical triangle plots normally associated with Bayesian marginalisation within cosmology (and previously unachievable using likelihood maximisation because of the prohibitive computational cost). We have tested the setup on three cosmological models: the ΛCDM model, an extension with varying neutrino mass, and finally a decaying cold dark matter model. Given the default precision settings in connect, we achieve a high precision in χ2 with a difference to the results obtained by class of Δχ2 ≈ 0.2 (and, importantly, without any bias in inferred parameter values) — easily good enough for profile likelihood analyses.

Cite

CITATION STYLE

APA

Nygaard, A., Holm, E. B., Hannestad, S., & Tram, T. (2023). Fast and effortless computation of profile likelihoods using CONNECT. Journal of Cosmology and Astroparticle Physics, 2023(11). https://doi.org/10.1088/1475-7516/2023/11/064

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free