Forest Fire Identification in UAV Imagery Using X-MobileNet

35Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Forest fires are caused naturally by lightning, high atmospheric temperatures, and dryness. Forest fires have ramifications for both climatic conditions and anthropogenic ecosystems. According to various research studies, there has been a noticeable increase in the frequency of forest fires in India. Between 1 January and 31 March 2022, the country had 136,604 fire points. They activated an alerting system that indicates the location of a forest fire detected using MODIS sensor data from NASA Aqua and Terra satellite images. However, the satellite passes the country only twice and sends the information to the state forest departments. The early detection of forest fires is crucial, as once they reach a certain level, it is hard to control them. Compared with the satellite monitoring and detection of fire incidents, video-based fire detection on the ground identifies the fire at a faster rate. Hence, an unmanned aerial vehicle equipped with a GPS and a high-resolution camera can acquire quality images referencing the fire location. Further, deep learning frameworks can be applied to efficiently classify forest fires. In this paper, a cheaper UAV with extended MobileNet deep learning capability is proposed to classify forest fires (97.26%) and share the detection of forest fires and the GPS location with the state forest departments for timely action.

Cite

CITATION STYLE

APA

Namburu, A., Selvaraj, P., Mohan, S., Ragavanantham, S., & Eldin, E. T. (2023). Forest Fire Identification in UAV Imagery Using X-MobileNet. Electronics (Switzerland), 12(3). https://doi.org/10.3390/electronics12030733

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free