Lithium metal is one of the most promising anode materials for high-energy-density Li batteries. However, low stability caused by dendrite growth and volume change during cycling hinders its practical application. Herein, we report an ingenious design of bio-inspired low-tortuosity carbon with tunable vertical micro-channels to be used as a host to incorporate nanosized Sn/Ni alloy nucleation sites, which can guide Li metal's plating/stripping and meanwhile accommodate the volume change. The pore sizes of the vertical channels of the carbon host can be regulated to investigate the structure-performance correlation. After compositing Li, the bio-inspired carbon host with the smallest pore size (∼14 μm) of vertical channels exhibits the lowest overpotential (∼18 mV at 1 mA cm−2), most stable tripping/plating voltage profiles, and best cycling stability (up to 500 cycles) in symmetrical cells. Notably, the carbon/Li composite anode is more rewarding than Li foil when coupled with LiFePO4 in full cells, exhibiting a much lower polarization effect, better rate capability and higher capacity retention (90.6% after 120 cycles). This novel bio-inspired design of a low-tortuosity carbon host with nanoalloy coatings may open a new avenue for fabricating advanced Li-metal batteries with high performance.
CITATION STYLE
Yin, Y. C., Yu, Z. L., Ma, Z. Y., Zhang, T. W., Lu, Y. Y., Ma, T., … Shu-Hong, Y. (2019). Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review, 6(2), 247–256. https://doi.org/10.1093/nsr/nwy148
Mendeley helps you to discover research relevant for your work.