Unexpected Trend Deviation in Isoelectronic Transition Metal Borides A3T5B2 (A = group 4, T = group 9): Ti3Co5B2- vs. Perovskite-Type Studied by Experiments and DFT Calculations

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present the first bulk synthesis of Ti3Co5B2, which was realized by arc-melting a Co-rich elemental mixture. Our X-ray diffraction studies revealed a Ti/Co mixed occupancy on one of two possible Ti sites suggesting a phase width with x = 0–0.52 in Ti3–xCo5+xB2. Moreover, we studied experimentally and theoretically the isoelectronic substitution of Ti and Co by their respective higher homologues (Zr/Rh and Hf/Ir). Surprisingly, Ti3Co5B2-type phase was obtained only for the Hf/Ir combination (single crystal analysis of Hf3Ir5B2), whereas for Zr/Rh a perovskite-like phase (ZrRh3Bx) was discovered instead. We found that small but crucial differences (atomic radius ratio and electronegativity difference) between elements of the same group in the periodic Table are responsible for the unexpected trend deviation. This finding is supported by DFT calculations of the free energy of formation.

Cite

CITATION STYLE

APA

Shankhari, P., Scheifers, J. P., Hermus, M., Yubuta, K., & Fokwa, B. P. T. (2017). Unexpected Trend Deviation in Isoelectronic Transition Metal Borides A3T5B2 (A = group 4, T = group 9): Ti3Co5B2- vs. Perovskite-Type Studied by Experiments and DFT Calculations. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 643(21), 1551–1556. https://doi.org/10.1002/zaac.201700271

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free