Sulfur disproportionation in deep COHS slab fluids drives mantle wedge oxidation

13Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sulfur degassed at volcanic arcs calls for dissolved sulfate ions (S6+) released by subduction-zone fluids, oxidizing (in association with carbon) the subarc mantle, but sulfur speciation in subduction fluids at subarc depths remains unclear. We apply electrolytic fluid thermodynamics to model the dissolution behavior of pyrite in metacarbonate sediments as a function of P, T and rock redox state up to 4.3 gigapascals and 730°C. At subarc depth and the redox conditions of the fayalite-magnetite-quartz oxygen buffer, pyrite dissolution releases oxidized sulfur in fluids by disproportionation into sulfate, bisulfite, and sulfide species. These findings indicate that oxidized, sulfur-rich carbon-oxygen-hydrogen-sulfur (COHS) fluids form within subducting slabs at depths greater than 100 kilometers independent from slab redox state and that sulfur can be more effective than the concomitantly dissolved carbon at oxidizing the mantle wedge, especially when carbonates are stable.

Cite

CITATION STYLE

APA

Maffeis, A., Frezzotti, M. L., Denis Connolly, J. A., Castelli, D., & Ferrando, S. (2024). Sulfur disproportionation in deep COHS slab fluids drives mantle wedge oxidation. Science Advances, 10(12). https://doi.org/10.1126/sciadv.adj2770

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free