Abstract
We present a supervised machine learning algorithm for metonymy resolution, which exploits the similarity between examples of conventional metonymy. We show that syntactic head-modifier relations are a high precision feature for metonymy recognition but suffer from data sparseness. We partially overcome this problem by integrating a thesaurus and introducing simpler grammatical features, thereby preserving precision and increasing recall. Our algorithm generalises over two levels of contextual similarity. Resulting inferences exceed the complexity of inferences undertaken in word sense disambiguation. We also compare automatic and manual methods for syntactic feature extraction.
Cite
CITATION STYLE
Nissim, M., & Markert, K. (2003). Syntactic features and word similarity for supervised metonymy resolution. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (Vol. 2003-July). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1075096.1075104
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.